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Abstract-This paper deals with the extension of the method of fractional steps to hydrodynamic and 
thermal problems for fully developed steady flow of viscous incompressible fluid in a curved circular tube. 
This numerical method yields good solutions from low to reasonably high Dean and Prandtl numbers. 
Typical examples for axial velocity profiles and temperature profiles, streamlines and velocity profiles for 
secondary flow and isotherms are given. Comparison of the numerically computed velocity and temperature 

profiles were made with experimental data and some theoretical solutions. 

NOMENCLATURE 

u’, u’, w’, velocity components in r, cp, 0 directions 
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u, u, w, dimensionless components in T, cp, 0 direc- 
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tions respectively ; 
local temperature; 

wall temperature; 
dimensionless temperature; 

average velocity in direction 0; 
radius of tube ; 
radius of curvature of the tube axis; 
dimensionless radial coordinate; 
Reynolds number ; 
Prandtl number; 
Dean number ; 
number of grid points of r-direction ; 
number of grid points of q-direction; 
radial coordinate in the tube cross section ; 
local Nusselt number ; 
peripherally averaged Nusselt number; 
peripherally averaged Nusselt number for 
straight tube; 

axial-temperature gradient ; 
time; 

dimensionless grid spacing l/(M - 1); 

dimensionless grid spacing n/(N - 1). 

Greek symbols 

v, kinematic viscosity ; 

cp. angular coordinate in the tube cross 
section ; 

8, angular coordinate normal to the tube 
cross section ; 

Y’, stream function of the secondary flow; 

i, vorticity in the cross section; 

t1, fictitious time. 

Subscripts 

i, j, space subscripts of grid point in r and q 
directions ; 

m, flow-averaged mean value; 

0, value for straight tube; 

W, value at the wall. 

Superscripts 

P? pth iteration in the fictitious time; 

n, nth time stage; 

-, average value. 

1. INTRODUCTION 

INTEREST in the problem of heat transfer in fully- 
developed tube flows dates back over a hundred years. 
The forced convection problems in curved tubes are 
frequently encountered in various heat exchanges, 
cooling or heating systems, chemical reactors, heat 

engines and other apparatus, equipment and devices. 
It is well known that the mode of fluid in a curved 

tube is characterized by a secondary flow field, which is 
superimposed upon the axial-velocity flow field. 

The nature of the viscous flow in a curved tube, as 
compared with simple straight-tube parabolic flow, 
causes relatively high average heat- and mass-transfer 
rates per unit axial pressure drop, especially for fluid 

with a high Prandtl number and high Schmidt number. 
Of fundamental interest to the development of a 

complete understanding of viscous-flow phenomena in 
toroidal tubes is the nature of the velocity and 
temperature distributions in the fully-developed flow 
region. The first theoretical study of the fully de- 
veloped steady flow in a curved tube with circular 
sections was made by Dean [l] in 1927. He pointed out 
that the dynamic similarity of such flow depends on a 
non-dimensional parameter K = [(2a/L)(a W,/v)‘] 

where W, is the mean velocity along the pipe, v the 

kinematic viscosity and a the radius of the pipe, which 
is bent in a circle with a radius L. Physically this 
parameter can be considered as the ratio of the 
centrifugal force induced by circular motion of the 
fluid to the viscous force. Dean’s analysis of the 
toroidal flow was restricted to small values of K. 

Barua [2] considered fully developed motion for 
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large K and obtained an approximation solution by a 
Karman-Pohlhausen momentum integral method. 
McConalogue and Srivastava [3] extended Dean’s 
work and adopted a parameter D = [4Re(2a/L)“‘]. 

Their numerical solutions were given over the range D 
= 96 to D = 605.72, the value corresponding to the 
upper limit K = 576 of Dean’s work. 

Truesdell and Adler [4] have obtained results up to 
D = 3578. Greenspan [5] and Collins and Dennis [6] 

have centered their interest on the following range of 
D: 0 I D I 5000. There are some discrepancies how- 
ever, between previous numerical results. For exam- 
ple, Greenspan’s calculations do not coincide with 
those of McConalogue and Srivastava. Greenspan 
used a finite difference method based on the so-called 
forward and backward difference scheme, while Col- 

lins and Dennis have used the difference correction 
method of Fox. The solution procedure requires to use 

the results from the previous value of D as an initial 
assumption. They have used the increment AD = 20 
from D = 1000 to D = 2000 and increments AD = 10 

for higher values of D. The computational procedure 

was found to converge satisfactorily only for solutions 
in the range D = 96&1000, but for the range D 
= 200@5000 it was necessary to use a smoothing 

process for the corrections. 
Recently, Zapryanov and Christov [7] have ob- 

tained a numerical solution of the same problem by the 
method of fractional steps. In contrast to the Collins 

and Dennis’ work in our calculations the increments 
are AD 2 500. 

Another approach, also including heat transfer in 

the curved tube has been given by Patankar et al. [8]. 
On the basis of the marching technique they have 
obtained fully-developed profiles independent of the 

axial direction for a wide range of values D. 
Mori and Nakayama [9] obtained the tirst theoreti- 

cal heat-transfer solutions by boundary-layer methods 

for the constant wall-temperature boundary con- 
ditions. It is shown by Dravid et al. [lo] that Mori and 
Nakayama’s Prandtl number dependence is inac- 
curate. Austin’s solution [ll] for fully developed 
velocity profiles was used by Kalb and Seader [ 121 in 
the study of the heat-transfer problem. The thermal- 
energy equation was solved numerically by use of a 
point successive-overrelaxation method. Solutions 
have been given for Prandtl number Pr varied from 
0.005 to 1600. 

The purpose of this paper is to present flow and 
heat transfer results obtained by a method offractional 
steps for steady fully developed laminar Row in a 
curved circular tube under the thermal boundary 
conditions of constant wall temperature. Results are 
presented for the range 10-7000 of parameter D and 
for a Prandtl number varied from 0.005 to 2000. 

2. FORMULATION OF THE PROBLEM 

The present paper concerns a steady hydrodynami- 
cally and thermally fully-developed laminar flow, of 
incompressible viscous fluid in a curved circular tube 

x 

-)Y 

FIG. 1. System of toroidal coordinates for a curved circular 
tube. 

under the thermal boundary condition of a uniform 
wall temperature. Figure 1 shows a system of 

We assume that the radius of curvature of the tube 

toroidal coordinates (r, cp, 0) concerning the motion of 
the fluid through the pipe. The distance down the tube 

axis is large in comparison to the radius of the tube, 

is measured by LO, where 0 is the angular coordinate 

normal to the tube cross section. A point Pin the cross 

physical properties of the considered fluids are con- 

section is located by the polar coordinates r and rp. The 

radius of the curvature of the coiled tube is denoted by 

stant and viscous dissipation is negligible. 

L. Let (u, u, w) denote the velocity components in the (r, 
cp, 0) directions respectively. 

Let us introduce the following transformation 

v L 1’2 w’= ~ ~ Li 11 a 2a 
w (1) 

T, - T= [4aRePrGT]H, u =: iz, 
dY I’= _~~ 
clr 

(2) 

where v is the kinematic viscosity, 

1 8T 
G?‘ = - -- - = const., 

L (70 

T, the wall temperature and Pr the Prandtl number. 
After applying the assumptions stated above, the 
governing equations for the present problem in dimen- 
sionless form are 

Equation for the primary flow 

ay aw ay aw 
aq ar & aq ! = D + V’w. 3) 

Equation for the secondary flow 

I ay ai ay ai -!---- - --- aw ~ r acp ar ar acp 1 + w 37~ 
w aw 

+ ~ -COST = v2i 
r av (4) 
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where 

Energy equation 

Pr aY c3H a’? aH - ---_- 
r ! a9 ar ar ap > 

=V’H+;. (6) 

It is noted that the vorticity function c is introduced 
here to avoid using biharmonic function V4Y in the 
equation for secondary flow. The Navier-Stokes equa- 
tions (3)-(j) and the energy equation (6) are nonlinear 
partial differential equations of elliptic type. The 
boundary conditions are : 

of semicircular arcs concentric with the boundary r 
= 1 (Fig. 2). The grid points are uniformly spaced with 
spacing h in direction r and I in the angle cp. Let h 
=[l/(M-l)] and /=[n/(N-l)], where A4 and N 
are the numbers of the points in r and cp directions, 
respectively. In order to solve the problem (3)(8”) we 
shall add the time derivatives of the functions U: c and 
H to equations (3), (4) and (6) which physically 
correspond to the unsteady-state problem : 

aw ay 8~ ay aw 

at’ ! 
+ D + v2w, (9) 

ai i ayaai 
at=- -c 

aulai +ww 

r a9 ar dr aq > ar 

xsinq + f ZcOSq + V’<, (10) 

Y=g=w=T-7,=0 atr=l. (7) aH Pr 

Because of the symmetry we have 
at=-7 ayt’iir ! 

ayI aH ay aH --- iV2H+;. 

(11) 

W, - 9) = - W, 9) 

i(r, - TD) = - &-, 9) (8) 

w(r, -cp) = -w(r,54) 

and it is only necessary to consider the upper half of the 
circular region. Consequently, the boundary con- 
ditions are : 

at r = 1 and02 u, 2 n, (7‘) 

aw 
-=0 at cp =i and r=O. 
dr 63”) 

In contrast to the forced convection problem with 
buoyancy effect, for the problem at hand, the momen- 
tum equations and energy equation are uncoupled and 
the flow problem can be solved independently. 

3. FINITE DIFFERENCE APPROXIMATION 
AND COMP~ATIONAL PROCEDURE 

We suppose the semi-circular region to be divided 
into a grid formed by a set of radial lines which cut a set 

I 

N M 

FIG 2. Numerical grid in the tube cross section. 

Since the boundary conditions (7)-(X”) do not depend 
on the time, the unsteady-state problem will converge 
to the steady-state problem. So in our numerical 
solution we can apply a converge iteration technique 
using the time step as a parameter [13]. For the 
purpose ofcomputation we use an implicit scheme that 
can be factored [14] into a multi-stage process with 
fictitious time t, 

dY 
;y2yt+5. 

I 

(12) 

Some di~culties arise because there are no physical 
boundary conditions for the vorticity [ at the wall of 
the tube. That is why we have solved the equation 
inside the circle SZ,(Fig. 2). At ti, we put the condition 

[(n+ 1) = _ AY(n, 

where n is the number of the time stage. From the 
condition 

we find 

Y/Q, = 4Y,fQ, Y/Q = 0. 

The corresponding difference equations and boundary 
conditions for the flow uroblem are 

+ Acp + iA&‘)A, 
ri 

wjf’j + D (13”) 

for j=2 ,..., N-l, i=2 ,..., M-l, w$+!jj=O, 

- 3W’p”F + 4w$+ - wlQ+ = 0. 
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nated when the following relative error criterion is 
satisfied : 

for i = 2 ,..., M - 1, j = 2 ,..., N - 1, @‘! = @?_,, 
Then we take 

@” = &pi, @+ II = ;(P+ I) pn+ I) = ;“P+ 1) Lpl+lb _ qxP+l) - 

_ ‘A q!PJ.A 

and obtain the values of the computed functions K [ 

ri , t.J 
and Y over the new time stage. 

The physical time iteration is terminated when the 

i \ following criterion is satisfied 

+ c\~p + ~I~f+7~jp:~,)~j;;+ b-i,j (14”) 
! I 

for in_ ,i_“.;/;M+~2~~j_=,2_?....,M-. 1. 
5 ) 

1 J’ 
(P) Because of the inner iteration about the iteration 

I ‘p ,hd 1 J’ 

parameter t, actually according to physical time t, one 

p, - p, 
‘I_ 1.J 

0.5 7 i 
1 

A, - ,.; A,‘@{Acp $‘; 
i 

solves the following problem 

w(“+ 1 2’ _ W(n’ 
= A, _ lAVY(“+r’A, w(n+r 2’ 

I 0.5 T ri 
+ Acp + ,;Ali)‘@;A, ;;“i”‘+ Fi,> (14b) 

L i 
+ Acp + ! A,Y(“+ “Acp w(“’ + D, 

ri i 

for $” = O,dp’y = 0,j = 2,. .., N - l,i = 2,. .,M - 2; w’“+” - w(“+l 2’ 
__ = 

0.5 7 i 

A, _ ~Ac,Y’“+“A, 
r i 

T!P! _ T!P! 
2.’ = A 

, 
~!P? + 7~). 

1. J -l.J (15a) 
71 

+ &, + iA,yCn+l)~, W(n+l) + D. 
ri 

fori=2,M=2,j=2 ,..., N-l.Yi.j=O,Y,~,-2.j= 

4V.M-l,j, cP.W.j=O. 

qxp+ 1) _ g(P) 

~_ = Acp @P + 1) 

71 
(15”) 

for i = 2,. _, M - 2.j = 2,. ., N - 2. Y,, 1 = Yi, V = 0. 
Here 

Qi.j+l - 2Qi j + Qi,j_, 
ApQij = -~~--- + 

L 

Q. 
A Q,. = -I,J+l - Qi.J-1 

‘p IJ 21 . 

This scheme is non-linear implicit and therefore ab- 

solutely stable. It is worth noting that the finite- 

difference equations (13)-( 15) are for order 
O(7 + 71 + h2) with exception to the points along 
cp =0 and cp = r7, where the order of the numerical 
scheme is O(7 + 71 + h). 

The finite difference approximation of the energy 
equation (11) has the form 

fi!“). _ H!“‘. 
1. J 1. J 

” (AcpYijA,H$+” 
0.57 = - r 

- A,YijAcpI?(ijn’) 

H!“t” _ ,fj;n; 
1. J 

Pr 

0.5T -= 
- -;-(Ac’YijA,H~;+” 

- A,YijA(p&‘) 

Qi+l j - Qi.j-1 
A,Qij = (-~~~~~~ 

2h ’ 

+ A Hi;+ ” + l\cpHj;’ + 2.2 , D 

The boundary conditions are: 

F,, = wij 
c 

A,wijsin ‘pj + f Acpwi, jcos ‘pi ) atr= 1, H,v,j=O, j= 1,2 ,_.., N. 

The iterative procedure begins with solving the 
atcp=O 

equations (13) and (14). We put Y(l’ = Y’“’ and do an 
entire spacing in respect to the physical time, where 

fpl = 7 
rf12t 

fp; + A 

$1’ f r ’ 2(rf12 + T) 

Y(“) is taken from the previous stage. After obtaining H!“’ 

pl) we do a spacing in respect to fictitious time I, in x A Hf’jl - PrYi. 2 
I H1”‘, + 1. + wi. 

0.57 D 
equations (15) and get Y(“. By means of Y(” we repeat 

2r,l ’ 

the procedure to find p*’ and KJ*‘. Iteration is termi- atcp=rt 
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RI"',_, = 
r:'12 + 7 _ 21' 
LfQ)N-2 

7. 2 

Pryi. N- I 
2rJ 

4. FLOW AND HEAT TRANSFER 

RESULTS 

When a fluid flows through a curved tube, a pressure 
gradient directed towards the centre of curvature is set 

up across the tube to balance the centrifugal force 

arising from the curvature. The fluid in the middle of 

the pipe moves outwards and that above and below it 
moves inwards. Thus in the tube the secondary flow 
has the effect of shifting the high velocity region 

towards the outer wall and creating a much thicker 
layer of slowly moving fluid at the inner wall. The 

resultant combined primary and secondary flow cau- 
ses a fluid element to have a screw-like motion. The 
low-Dean secondary flow stream lines are essentially 

symmetrical and convex [l, 21. As a Dean number is 
increased, causing an intensification of the secondary 

flow, non-convex regions are developed by the for- 
mation of dimples in the streamlines of the secondary 
flow in the plane of the cross-section and the lines of 
constant axial velocity Ware given in Figs. 3-5 for 

Dean numbers equal to 2000, 5000, 7000 respectively. 
It is not surprising that there is a movement at the axial 

velocity peak nearer to the outer wall. The centrifugal 

force which drives the secondary flow itself takes much 
greater values on the outside of the bend. The form of 
the streamlines shows that the secondary flow com- 

ponents take much greater values on the inside of the 

tube. The curves of constant Wshow the tendency of a 
central core region to develop as D increases. Within 
this region there is a sub-region which is far from the 
walls of the tube and where viscous forces are small. 

In Figs. 6-8 the constant dimensionless values of 
temperature H is shown for different Dean and Prandtl 

numbers. For low Prandtl number the maximum 

Inner 
WOII 

h 14 II 27 50 
3. 9.00 
4 650 

z 400 I 50 

I 235 
2 230 
3 170 
4 120 
5 50 

FIG. 3. Streamlines for secondary flow and isolines for axial 
velocity at D = 2000. 

Inner 
Wall 

; 2063 20 
3 13 
4 6 
5 I 

h 438 420 4 

3 280 

2 hi0 

FIG. 4. Streamlines for secondary flow and isolines for axial 
velocity at D = 5000. 

IllllW 
Wall 

h $“32 
3 1800 

5” 1300 800 
6 300 

: 540 55 I .40 

3. 440 
4 340 
5 240 

FE. 5. Streamlines for secondary flow and isolines for axial 
velocity at D = 7000. 

FIG. 6. 

0=2000 

Pr=30 
H 

H 
Pr=5 

I 00015 
2 00014 
3 00010 
4 00006 

I 000423 
z 000300 000420 

4 000180 
5 000060 

Isothermals for D = 2000 at Pr = 30 and Pr = 5 
respectively. 
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0=5000 

Pr=30 
H : EE 

3 000060 
4 000048 
5 000032 
6 000016 

: EE,” 
3 00038 
4 00024 
5 00010 

Isothermals for D = 5000 at Pr = 30 and Pr = 0.7 
respectively. 

ii 
Pr=O.7 

: 00060 0.0065 

3. 0.0044 
4 0.002.6 
5 0012 

/ 0047 

: 0046 0032 
4 ooia 
5 0004 

FIG. 8. Isothermals for D = 30 at Pr = 2000 and Pr = 0.7 
respectively. 

temperature occurs at points near the diameter of 

symmetry. The temperature profiles for Prandtl num- 
ber of 0.7 (Figs. 6 and 7) are skewed toward the outer 
wall. A typical contour of dimensionless temperature 
for higher Prandtl number is given in Fig. 8, where Pr 
= 2ooo. 

One can see, from equation (6), that as the Dean 

number increases, the effect of the convective terms 
also increases for a given Prandtl number. As the 
Prandtl number increases, the effect of the convective 
terms also increases for a given Dean number. So the 
effect of the Dean number is equivalent to the effect of 

the Prandtl number. The heat transfer results from the 
present analysis is compared with the result from Kalb 
and Seader [12]. As we can see from Table I our 
calculations essentially exceed those of [Qj. 

The local Nusselt number is defined by 

where 

is the flow-averaged mean value of H over the flow 
cross section and 

wrdrdq 

is the mean of Wover the cross section of the tube. 
Therefore, the peripherat averaged Nusselt number 

Nu equals to 

7I ! ? Hwrdudq 
0 0 

The average Nusselt number is plotted for low Dean 
numbers and high Prandtl numbers in Fig. 9. One can 
see that the average Nusselt number increases with the 
increase of the Prandtl number even when the Dean 
number is held constant. Figure 10 shows the effect of 
Dean number on the peripheral average Nusselt 
number Nu for Prandtl numbers Pr = 0.7 and Pr = 5. 

2 
//,/,lli!lli!l,l,//l 
200 400 600 8001000120014001600 18002000 

FIG. 9. Numerical results for peripherally average Nusselt 
number at low Dean numbers. 

Table 1 

Pr 2000 1600 800 400 100 30 

D - 33.44 56.56 85.8s 105.5 860.7 
D 43.33 43.33 60 too 500.0 so00 
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D 

Flc;. 10. Comparison of the numerical results with experimen- 
tal data for high Dean numbers. 

Here we give the comparison of our numerical results 
with experimental work [9]. 

5. CONCLUSIONS 

The method of fractional steps has been successfully 
applied to hydrodynamically and thermally fully de- 
veloped steady flow ofviscous incompressible fluid in a 
curved circular tube. No numerical di~cuities have 
been encountered. The comparisons show very good 
agreement of our results with available ex~rimenta~ 
data and some theoretical solutions. 

Further tasks are the following: 

(i) Application of the method to the non-steady fully 
developed flow in a curved tube ; 

(ii) Extension of the method to the three- 
dimensional developing entry steady flow, both hy- 
drodynamic and thermal, in helically coiled tubes. 

Work on these tasks is currently in progress. 
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ECOULEMENT LAMINAIRE ETABLI ET TRANSFERT 
THERMIQUE DANS LES TUBES CINTRES 

R&sum&--On etend la mCthode des pas fractionnels aux problimes hydrodynamiques et thermiques pour 
I’tcoulement permanent et Btabli d’un fluide visqueux incompressible dans un tube circulaire cintr6. Cette 
mtthode numtrique fournit une bonne solution pour les nombres de Dean et les nombres de Prandtl faibles 
et raisonablement tlevts. Des exemples sont don& pour les profils de vitesse axiale et de tempbature, pour 
les isothermes. Des comparaisons sont faites entre les rdsultats numeriques, les donnies expkrimentales et 

quelques solutions thkoriques. 

VOLL AUSGEBILDETE LAMINARSTROMUNG UND WARMEUBERGANG IN 
GEKRtiMMTEN ROHREN 

Zusammenfassung--Diese Arbeit befaDt sich mit der Erweiterung des Differenzenverfahrens fiir hydrodyna- 
mische und thermische Probleme bei der voll ausgebildeten station&en StrGmung eines viskosen, 
inkompressiblen Fluids in einem gekriimmten, kreisrunden Rohr. Dieses numerische Verfahren fiihrt bei 
kleinen und bei miil3ig hohen Dean- und Prandtl-Zahlen zu guten LGsungen. Typische Beispiele fi.ir axiale 
Geschwindigkeits- und Temperaturprofile, fiir Stromlinien und fiir Geschwindigkeitsprofle der Sekundlr- 
striimung, sowie fiir die Isothermen werden wiedergegeben. Die numerisch errechneten Geschwindigkeits- 

und Temperaturprofile werden mit Versuchsdaten und mit einigen theoretischen LBsung verglichen. 



flOflHOCTbI-0 PA3BMTOE JIAMMHAPHOE TEllEHME M TENIOFIEPEHOC 
B M30rHYTbIX TPYGAX 

AHHoTauwn MeTon iIpO6HbIX LUBI'OB o6o6ueH m IH~~ORHH~MWI~CKI~ M I’emomIe mnaw rlp~ 

rlO."HOCTbK) pa3BRTOM CTaUAOHapllOM Ie'1eHMH LW'SKOir HeCW?MaeMOfi EAIIKOCTH B M30,-HyTOii KpyrnOti 

-rpy6e. T~KOGI wicneHHbIfi Me.ro;( mer xopowie pe'3ynbTarbr B nmm3oHe OT ManbIx ~10 yMepem0 

6OJlbUIHX 3HaYeHFiii YY(CCJl ,&iHa H npatIilTfl% npMBeReHb1 THUWlHbIe pWrlpe,YleReHHSl LiKCMZiflbHOfi 

CK~~OCTH 5ireMneparypbl. JrHHMH IOKLI. a-raKwterlpo~tlnlrCKOPOCTH ~~0pHYH0r0 TeqeHIZx II H3OTepMbL 

,l!&tlo CpLiBHCHHe pelyRbEl?OB YAC.TetiflbIX pWfeTOB npo@meE cK0p0C~i5 H TeMrlepaTypbI c 3rcrrepu- 

MCHT~RbHb~M~ .WHtlb~Mi4 H C PRROM RpyrltX TCOpeTWleCXKX f,elIleHHit. 


